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1.  Introduction 

Foutz [1] proposed a new goodness-of-fit test for fitting 

univariate as well as multivariate distributions.  He showed 

that the null distribution of the test statistic, F , does not n 

depend on (1) the hypothesized distribution, or (2) the number 

of components in the random vector under study.  An integral 

representation for the null CDF of F was provided.  Closed 

form expressions for this null distribution are quite 

difficult to obtain, even for small sample sizes.  The 

alternative has been to approximate the distribution by a 

—1 -1   -2 normal distribution with mean e  and variance (2e  -5e  )/n; 

this, however, does not appear to provide a good approximation 

to the percentiles of the null distribution of F for moderate 

sample sizes. 

The authors[2] compared the F -test with the Chi-squared 

test and the Kolmogorov-Smirnov test and found that the F -test 
n 

does have higher power when fitting certain types of distribu- 

tions.  Another investigation by the authors and Linhart [3] 

examined the power of the F -test when fitting a multivariate 
n 

normal distribution; the test did well in detecting mean shifts 

and variance shifts.  We therefore believe that the F -test n 

is a definite alternative to the Chi-squared and Kolmogorov- 

Smirnov tests when fitting univariate distributions and it is 

just about the only available test for fitting multivariate 

distributions.  However, the test is not very convenient for 

applications due to the difficulty in obtaining accurate 



\ 

critical values.  This paper fills the gap by providing tables 

of approximate pecentiles of the null distribution of F . 

2.  Description of the F -Test n 

The procedure for calculating the test statistic F is the 

following.  Given a random sample X,, X,, ... , X  ., from 

a continuous multivariate distribution, the sample space is 

partitioned into n statistically equivalent blocks.  Let 

h,(X) , h2 (X), ... -, h . (X) be any n-1 "cutting functions" 

such that h, (X) has a continuous distribution, k = 1, 

2, ... , n-1, and let k-,  k_, ... , k , be a permutation of 

1, 2, ... , n-1.  Let X(k.) be the sample vector corresponding 

to the k,^1 order statistic of h, (X.), i = 1, 2, ... , n-1. 

The initial partition of the sample space into two blocks is 

defined by 

B1  = {X|hk (X) < hk (Xfk^)}, and 

B2 = Bj. 

The cutting function h. (X) is then used to partition B., 

(if k2 < kxJ or B2 (if k2 > kL) into two subblocks in a similar 

fashion.  When all the cutting functions are exhausted the 

sample space will have been partitioned into n statistically 

equivalent blocks, 8-,, ß2, ••• » ß_-  A convenient choice for 

the cutting functions in the univariate case is the identity 

function.  In the multivariate case letting h. (X) = X -* , the 

jth component of X (for various j), appears to work well. 

More details on partitioning the sample space into statistically 

equivalent blocks and some examples can be found in [3], 



Once the statistically equivalent blocks are determined, a 

computational formula for the test statistic F for the 

hypothesis that the samples are from a specified distribution 

H is 

n 1 
F„ = 2 max [0, i-  - D.] , n n    i 

i=l 

where D. = P[X e ß. | H] 

The integral representation for the null CDF of F results 

in the following closed form expressions for n = 3, 4, and 5. 

P[F3  S  x] 

6x* 
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It does not appear to be possible to generate a closed 

i expressic n for the CDF of F in the genei 

large sample normal approximation is given by 

form expressicn for the CDF of F in the general case.  Foutz's 

(1) P[F s x] I * f -1(X " f2 
? Wz I 

n |j<2e  - 5e 2)n)1/2 J 

where <t>  is the standard normal CDF.  To check the accuracy of 

this approximation in our earlier study [2], we generated 

samples of size n-1 • 20, 30, and 50 from a uniform distribution 

on [0,1] and tested the hypothesis that the the samples are iii 

fact from that distribution.  The empirical significance levels 

in 80,000 replications are given in Table 1. 

Nominal 
Significance 

Level n-1    2p_       30_       50 

0.10 0.0757   0.0800   0.0859 
0.05 0.0372    0.0399    0.0428 
0.01 0.0082   0.0083   0.0093 

Table 1 
Empirical Significance Level 
(Based on 80,000 replications) 

It can be seen that the observed significance levels are 

consistently smaller than the nominal values by about 10-20%. 

We therefore proposed the use of Monte Carlo critical values, 

which were based on 25,000 replications.  These values are 

given in Table 2 and the corresponding observed significance 

levels, base- on 225,000 subsequent repetitions, are given in 

Table 3. 

T^~ 
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Significance 
Level 

0 
0 
0 

10 
.05 
.01 

 n^l  

20 30 50 

0.42714 0.41903 0.40816 
0.44865 0.43553 0.42116 
0.48659    0.46579    0.44487 

Table 2 
Monte Carlo Critical Values 

(Based on 25,000 replications) 

Nominal 
Significance 

n-1 

Level 20       30      50 

0.10 0.1006   0.9700   0.1003 
0.05 0.0486    0.0486   0.0498 
0.01 0.0103    0.0101   0.0102 

Table 3 
Empirical Significance Level 
(Based on 225,000 replications) 

The above findings lead us into a search for an improved 

approximation for determining the percentiles of the null 

distribution of F .  We found that allowing the mean and variance 
n 

to be functions of the sample size leads to greatly improved 

approximations.  While it is difficult to give precise error 

bounds on the percentile values, our computational experience 

indicates about a four decimal place accuracy.  This leads to 

rejection rates with errors in the fourth decimal place, usually. 

Comparing the error in the rejection rates for the asymptotic 

approximation (1) given by Foutz, our approximation is better 

by a factor of 10 or more. 



3.  Modified Normal Approximation 

The data for the approximation of the null distribution of 

the Foutz statistic was obtained by Monte Carlo methods.  For 

a given sample size n-1, sequences of n-1 uniformly distributed 

numbers where generated using the IMSL* random number generator 

GGUBS,  The Foutz statistic was then computed and tabulated 

into one of 200 equilength intervals.  This process was 

replicated 25,000 times.  The entire set consists of the 

empirical cumulative distribution functions obtained from this 

data for 60 sample sizes, n-1 = 2(1)40, 40(2)70, and 70(5)100. 

Potentially this yields as many as 12000 pieces of data, 

however if only intervals with nontrivial data in them are 

counted, this is reduced to about 4700. 

A data fitting problem with 4700 points is not easily handled 

unless a linear model is accepted.  We do not know the behavior 

of the distribution as the sample size gets large, so we were 

reluctant to impose a form with only linear parameters, 

especially in sample size.  We decided on attempting a correction 

to the asymptotic approximation given by Foutz. 

After some experimentation with various types of corrections, 

it was decided the most reasonable was to include correction 

terms in the argument of the asymptotic approximation.  In 

order to make the computation feasible it was decided to fit the data 

in a two pass scheme; first the null distribution for each sample 

*International Mathematics and Statistical Libraries, 7500 
Bellaire Drive, Houston, TX 77036 



size was approximated as below, and then the parameters in these 

approximations were fit by functions of sample size. 

The precise form of the approximation was through the 

argument of a normal distribution, which was taken to be of 

the form 

-1, (a + b n(x-e *) + c (x-e"1)2)/ v'(2 ~l  - 5e~2)n. 

Because we are strongly interested in the inverse CDF, the data 

was weighted at each point by the centered difference from the 

Monte Carlo data, which then resulted in a greater weight on 

the part of the curve with a large slope.  The results of this 

least squares process yielded a table of values of a, b, and 

c versus sample size (actually we consider them as functions 

of n = sample size +1).  We observe that the amount of 

scatter increases as n increases.  There tends to be even more 

scatter with higher powers of (x-e~ ).  For this reason it was 

decided to weight the smaller sample sizes more heavily, and a 

weight of 1/n was adopted.  Since the data is more dense for 

smaller sample sizes this results in considerably less weight 

for the large sample sizes, although we feel the trend is still 

properly modelled and that our approximation is considerably 

better than the asymptotic approximation for very large sample 

sizes, say even up to 1000. 

In the second stage of the process the coefficients a, b, 

and c was chosen to allow a rate of decay (or growth) of the 

coefficients to be dictated by the data.  Thus we fit a, b and 

c with functions of the form A + Bnc. 



For the terms which are constant and linear in (x-e  ) the 

exponent was negative, however, for C(n) the exponent was 

positive, indicating that the terra grows (somewhat slower than 

linearly) with sample size.  We do not consider this as 

bothersome, however, since the linear term in (x-e  ) 

has already (due to the form of the asymptotic approximation) 

been included with a factor that grows linearly with sample 

size. 

The overall result of this nonlinear least squares 

approximation is the approximate CDF involving the nine 

parameters, 

(2). P[Fn  < x]     *   Ug(x)/   \/(2 e'1 -  5  e~2)n)l   , 

-1 -1   2 where  gbO   =  a(n)   + b(n)   n   (::-e     )   +  c(n)    (x-e     )    ,   and 

a(n) = 0.2089 + 0.1876 n"1-4416' 

b(n) = 1.0015 - 0.05672 n-0-7377, 

c(n) = 0.3049 - 0.5912 n0'8927. 

In order to test our results, two different approaches 

were taken.  First, the number of rejections for previously run 

tests were available for sample sizes of n-1 =20, 30, and 50, 

at (approximately) the 0.10, 0.05, and 0.Q1 levels.  By 

computing the derivative of the approximate CDF, equation (2), 

and making a correction along the tangent line, we were able to 

estimate the anticipated rejection rate that would occur with 

our present approximation.  This data was accumulated over 

225,000 replications, and is given in Table 4.  The main entry 



is the anticipated rejection rate when using the results of our 

approximation, above.  As a point of comparision with Foutz's 

asymptotic approximation, we include the corresponding rates 

for it in parenthesis.  Second, to test the approximation for 

a smaller, as well as an intermediate sample size, we computed 

the  Fout2 statistic for 300,000 uniformly distributed samples 

of sizes 10 and 40, and tabulated them at intervals of .0001 in 

the range of interest.  The results"of these calculations are 

shown in Table 5 for the 0.10, 0.05, and 0.01 levels. 

Nominal 
Significance 

n-1 

Level 20_        30_      5C 

0.10 0.0994     0.1002    0.1007 
(0.0764)   (0.0801)  (0.0E40) 

0.05 0.0496     Q.0500 0.0505 
(0.0385)   (0.0402)  (0.0420) 

0.01 0.0098     0.0095    0.0098 
(0.0085)   (0.0086)  (0.0088) 

Table 4 
Anticipated Rejection Rates 

From Approximate Critical Values 
(Based on 225,000 replications) 

Nominal n_l 
Significance 

Level 10 40 

0.10                      0.0989 0.0998 
(0.0687) (0.0824) 

0.05                      0.0481 0.0491 
(0.0349) (0.0087) 

0.01                      0.0086 0.0098 
(0.0069) (0.0087) 

Table 5 
Empirical Significance Levels 
(Base on 300,000 replications) 



As is shown by the tables, we expect the error in the 

rejection rates due to use of our approximate percentiles to 

be smaller by a factor of 10-20 for the 0.20 to 0.05 level 

than they are for Foutz's normal approximation.  At the 

extreme tails, our approximation is not as good as at the more 

moderate levels, but is still a worthwhile improvement over the 

asymptotic approximation. 

Table 6 lists some upper percentiles of the approximate 

CDF given by Equation (2) for sample sizes 5(1)100, 100(10)200, 

and 200(100)1000.  The exact values are given for n-1 • 2, 3, 

and 4.  Since we expect the entries to have about 4 digit 

accuracy, linear interpolation for intermediate sample sizes 

will have comparable accuracy.  Linear interpolation in the 

percentiles is not accurate, and other percentiles should be 

calculated from equation (2).  It is interesting to observe the 

"surface" of the null CDF in a perspective plot, as in Figure 

1.  Of course, only discrete slices exist; the cross section 

lines in the direction of sample size are an artifact of the 

plotting package.  The convergence toward a sharp rise of the 

CDF in the vicinity of x - e" as sample size increases is very 

apparent. 

10 
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*   3 3.4 1523 0.43838 

0.43975 
0.46673 
0.46850 

0.31792 
3.53954 
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0.58870 

0.64228 
*   4 0.41639 0.54437 0.62217 
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0.43436 
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0.48971 
0.52987 
0.52385 

0.57048 
0.55834 
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0.42456 
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11 0.41018 0. 44294 

0.44061 
0.47075 0.49549 0.52502 0.54563 

12 0.40921 0.42301 
0.42156 

3.45724 0.49039 0.51908 0.53873 
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16 0.40583 0.41762 0.43310 3.45612 0.47548 0.50066 0.51744 
17 0.40510 0.41674 0.43156 0.45388 0.47351 0.49732 0.51325 
18 0.40441 0.41573 0.43012 3.45 181 0.47396 0.49366 0.50939 
19 0.40376 0.41477 

0.41387 
0.42879 0.44988 0.46353 0.49053 

0.48767 
0.50583 

20 0.40313 0.42753 3.44808 0.45521 0.53252 
21 0.40254 0.41303 0. 42635 0.44639 0.46407 0.43497 0.49944 
22 0.40198 0.4 1223 0. 42524 0.44481 0.46206 0.48246 0.49656 
23 3.40144 0.41147 0.424 20 0.44332 0.45318 3.48010 0.49387 
24 0.4 0093 0.41074 0.423 21 0.44192 0.45841 0.47788 0.49133 
25 0.40045 0.41006 0.42226 0.44059 0.45573 0.47573 0.48894 
26 0.39998 0.40941 0.42137 3.43934 0.45515 0.47381 0.48669 
27 0.39953 0.40878 0.42052 0.43814 0.45355 0.47193 0.48456 
28 0.39911 0.40819 0.41972 3.43701 0.45222 0.47016 0.48254 
29 0.39870 0.40762 

0.40708 
0.40655 

0. 41894 0.43593 0.45336 0.46847 0.48062 
0.47879 30 3.39830 0. 41821 3.43490 0.44957 0.46687 

31 0.39792 0.41750 0.43392 0.44334 0.46533 0.47705 
32 0.39755 0.40605 0. 41683 0.43298 0.44716 0.46387 0.47539 
33 0.39723 0.40557 0.41618 0.43207 0.44504 0.46243 0.47381 
34 0.3 9687 0.40511 

0.4046 6 
0.41556 0.43121 0.44496 0.46114 0.47229 

35 0.39654 0.41496 0.43038 0.44392 0.45986 0.47084 
36 0.39622 0.40423 0.41438 3.42958 0.44292 0.45863 0.46944 
37 3.39592 0.40382 0. 41383 0.42882 0.44197 0.45744 0.46810 
38 3.39562 0.40341 0. 41329 3.42808 0.44105 0.45631 0.46681 
39 3.39534 0.40303 0.41277 

0.41228 
0.4 2 736 0.44316 0.45521 0.46557 

40 0.39506 0.40265 3.42668 0.43931 0.45416 0.46438 
41 3.3 9479 0.40229 0.41179 0.42601 0.43343 0.45314 0.46323 
42 0.39453 0.40194 0.41133 3.42537 

0.42475 
5.42415 

0.43769 0.45216 0.46212 
43 0. 39428 

0.39403 MW 0.41088 
0.41044 

0.43532 
0.43517 

0.45121 3.46105 
44 0.45030 0.46001 
45 0.39379 0.40095 0.41001 0.42357 0.43545 0.44941 0.45901 
46 0.39356 0.40064 0.40960 3.42301 0.43475 0.44855 0.45804 
47 3.39333 0.40034 0.40920 0.42246 0.43407 0.44772 0.45710 
48 0.39311 0.400C4 0. 40882 3.42193 0.43342 0.44691 0.45618 
49 0.39293 0.39976 0. 40844 3.42142 0.43279 0.44613 0.45530 
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51 0.39249 0.39921 

0.39895 
0.40772 
0. 40737 

0.42043 
3.41996 

0.43156 0.44463 0.45361 
52 0.39229 0.43398 0.44391 0.45280 
53 0.39210 0.39869 3.40703 

0. 40670 
0.41950 0.43341 0.44322 0.45201 

54 0.39191 0.39844 0.41905 0.42986 0.44254 0.45125 
55 3.39172 0.39819 0.40638 

0. 40607 
0.40576 

3.41861 0.42932 0.44183 0.45051 
56 0.39155 

0.39137 
0.39796 0.41819 

0.41777 
0.42379 0.44124 0.44978 

57 0.39772 0.42328 0.44061 0.44907 
58 0.39123 0.39750 0. 40547 

0.40517 
0.41737 
3.41697 

0.42778 0.44000 0.44839 
59 0.39103 0.39727 0.42730 0.43943 0.44772 
60 0.3 9087 0.39706 0. 4048 9 3.41659 0.42582 0.43882 0.44706 

TUBLE   6 
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0.40461 
5.40434 

3.41621     Q.42S36 
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63 
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6709 
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75 0.3 8877 0.39430 

0.39415 
0. 401 3 0 D.41173     0.42385 0.43153 0.43886 

76 0.38865 
0.38853 

0. 401 0 9 0.41146      0.42351 0.43112 0.43840 
77 0.39399 0.4008 9 0.41119     0.42018 0.43072 0.43794 
78 0.38842 0.39384 0.40070 0.41092     0.41986 0.43333 0.43750 
79 0.38833 0.39369 0.40050 0.41067     0.41354 0.42994 0.43707 
80 0.38819 0.39355 0. 40032 0.41041     0.41923 0.42955 0.43664 
81 0.38808 0.39340 

0.39326 
0.40013 0.41016     0.41892 0.42919 0.43622 

82 0. 38797 0.39995 0.43992     0.41362 
3.43968     0.41333 

0.42882 0.43581 
83 0.38787 

0.38776 
0.39312 0. 39977 0.42846 0.43541 

84 0.39299 0. 39959 0.40944     0.41334 0.42811 0.43501 
85 0.38766 0.39285 0.39942 0.43921     0.41775 0.42776 0.43462 
86 0.38^56 0.39272 

0. 39259 
0.39925 0.40898     0.41747 0.42742 0.43424 

87 0.3874S 0.39908 0.43875     0.41720 0.42709 
0.42676 

0.43386 
0.43349 88 0.38736 0.39247 0.39891 3.40853     0,41593 

89 0.38726 0.39234 
0.39222 

0. 39875 3.43831     0.41566 0.42643 0.43313 
• 90 3.38717 0. 39859 0.43810     0.41540 0.42611 0.43277 1 91 0.38708 0.39209 0. 39844 0.40789     0.41514 0.42580 0.43242 

92 3.38698 0.39198 0. 39828 3.43768     0.41589 0.42549 0.43207 
93 0.38689 0.39186 0. 3981 3 3.43748     0.41564 0.42519 0.43173 
94 3.38680 0.39174 0. 39798 0.43727     0.41539 0.42489 0.43139 
95 0.3 8672 0.39163 0. 39783 0.43708     0.41515 

3.43688     5.41491 
0.42459 
0.42431 

0.43106 
0.43074 
0.43042 

96 3. 38663 0.39151 
0.39140 

0. 3976 8 
0.39754 97 0.38654 0.43669     5.41467 0.42402 

98 3. 38646 0.39129 0.39740 3.43650     0.41444 0.42374 0.43010 
99 0.38637 0.39118 0.39726 0.43631      0.41422 0.42346 0.42979 

is 3.38629 
0.38553 

0.39108 
0.39009 

0. 39712 
0.39585 

0.40613     5.41399 
0.43443     5.41191 

0.42319 
0.42067 

0.42949 
0.42666 

120 3.38485 0.38922 0.394 73 0.40293     0.41309 0.41846 0.42419 
130 0.3 8425 0.38844 

0.38775 
0. 39373 0.40161     0.40348 

0.40043     5.40705 
3.39937     0.40575 

0.41651 
0.41478 

0.42201 
140 0.38371 0. 39285 0.42006 
150 0.38322 

3.38278 
0.38712 0. 39204 0.41321 0.41831 

160 0.38655 0.39131 3.39840     0.43458 0.41180 0.41673 
170 0.38237 0.38603 0.39065 3.39752     0.43351 

0.39671     Q.43253 
0.39597     5.40163 
0.39528     5.43379 

0.41051 0.41529 
180 0.38199 0.38555 0. 39004 

0. 38947 
0.40932 0.41397 

190 0.38165 0.38511 0.40823 0.41275 
200 
300 

0.38132 0.38470 0.38895 
0.38522 
0.38297 
5. 38142 

0.40723 0.41162 
0.37901 0.38176 

0.37997 
0.39038     0.39486 0.40009 

0.39582 
0.40366 

400 
500 
6 00 
700 

0.37760 0.38743     0.39133 0.39890 
0.37662 
0.37589 

0.37874 
0.37783 
0.37711 

0.38540     0.38886 0.39289 
0.39073 

0.39564 
0. 38027 
0. 37937 

0.38390     0.38706 0.39324 
0.37532 3.38273     0.38565 

0.38179     5.38451 
0.38905 0.39137 

800 0.37485 0.37653 0. 37865 0.38769 0.38986 
900 

1000 
0.37447 
3.37414 

0.37605 
0.37564 

0.37804 0.38100     0.38357 
0.38034     0.38277 

0.38657 0.38861 
0. 37753 0.38561 0.38755 

TABLE 6  (Continued! 
tigs   points for   th 
tna   Foutz  statist 

Approximate   screen 
distribution  of 
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(R ote:     ssi pie size is n-1) 
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